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FINAL REPORT ON “GEOSPATIAL REPRESENTATION, ANALYSIS AND
COMPUTING USING BANDLIMITED FUNCTIONS”, AFOSR GRANT

FA9550-07-1-0135

CORY AHRENS, GREGORY BEYLKIN AND KRISTIAN SANDBERG

Summary

The original goal of the proposal was to address three problem areas:

(1) Develop methods for representation and accurate interpolation of space-limited portions of
data using bases for bandlimited functions.

(2) Develop numerical integrators for solving systems of the Ordinary Differential Equations
(ODEs) that are based on quadratures for bandlimited functions, rather than polynomials.

(3) Develop representation of functions on the sphere, bandlimited functions on spherical
patches and associated multiresolution bases.

We obtained new significant results in all three areas which were published in 3 papers and 1
preprint. Let us summarize these results.

(1) We have transferred code that generates a local approximation to gravity models to Bran-
don Jones, a Ph.D. student in Aerospace Department at CU, who made some improvement
and fixed several bugs. The results of testing these models have been submitted as the
paper B. Jones, G. Born and G. Beylkin, “Comparisons of The Cubed Sphere Gravity
Model with the Spherical Harmonics” to Journal of Guidance, Control, and Dynamics, to
appear in Volume 33, Number 2 (see http://dx.doi.org/10.2514/1.45336). During the
summer of 2009 Brandon Jones implemented these localized gravity models for NASA at
Johnson Space center.
We also developed a new approach to approximating solutions of Laplace’s equation satis-
fying boundary conditions using Gaussians. Our new representation inherits a multireso-
lution structure from the Gaussian approximation, leading to fast algorithms for the eval-
uation of the solutions. In the case of the sphere, our approach provides a foundation
for a new multiresolution approach to evaluating and estimating models of gravitational
potentials used for satellite orbit computations. These results have been published as a
part of the paper G. Beylkin and L. Monzon, “Approximation by exponential sums re-
visited”, Applied and Computational Harmonic Analysis, v.28, pp. 131–149, 2010, (see
http://dx.doi.org/10.1016/j.acha.2009.08.011).
These results served as a starting point for an STTR grant involving two companies, Nu-
merica and Omitron. Also, local gravity models generated interest at NASA as an approach
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for modeling gravity of irregular shaped bodies, e.g. asteroids. The work in this direction
has already started.

(2) Current methods for solving ODEs, be that multistep or Runge-Kutta, are based on polyno-
mial approximations of functions. However, both recent and classical results indicate that
in many situations bandlimited functions, rather than polynomials, provide a near optimal
tool for numerical integration and interpolation of functions. Given recently developed tools
for computing with bandlimited functions, our goal has been to demonstrate that, by using
bandlimited approximations, we gain advantages in numerical solution of the initial value
problem for the ordinary differential equations (ODEs). Specifically, we considered ODEs
for orbit determination as a practical application of our approach. Using the Gaussian-type
quadratures for bandlimited functions, we developed ODE solvers that mimic the standard
implicit Runge-Kutta methods with Gauss-Legendre nodes. Similar to such methods, our
method is A-stable. Moreover, we show that in spite of the approximate nature of our
quadratures (generated for a finite but arbitrary precision), the integrators may easily be
made symplectic. The nodes of the quadratures do not concentrate excessively near the
end points thus allowing us to compute large portions of an orbit at once. This, in turn,
allows us to use initially a simplified gravity model (e.g., with only 3 terms) to approximate
a large portion (e.g., 1/2 of a period) of an orbit by rapidly solving a system of nonlinear
equations. We then access the full gravity model and evaluate the gravitational force at
the nodes that, as a result of the initial low order approximation, are located fairly close to
their correct positions. We then adjust the orbit without accessing the full gravity model.
This results in an essentially correct trajectory. At this point we may (and currently do)
access the full gravity model one more time to evaluate the gravitational force and perform
another iteration. Thus, we access the full gravity model at most twice per node while
using a number of nodes that is substantially lower than in traditional methods.
We have transferred a copy of the code to Jack M. Van Wieren, USAF AFSPC for testing
and comparison with existing solvers. A draft paper is attached to this report.

(3) We have developed a new numerical approach for obtaining quadratures on the sphere that
are invariant under the icosahedral group. These nearly optimal quadratures integrate all
(N + 1)2 linearly independent functions in a rotationally invariant subspace of maximal
order and degree N . The nodes of these quadratures are nearly uniformly distributed and
the number of nodes is only marginally more than the optimal (N + 1)2/3 nodes. Using
these quadratures, we discretize the reproducing kernel on a rotationally invariant subspace
to construct an analogue of Lagrange interpolation on the sphere. This representation
uses function values at the quadrature nodes. In addition, the representation yields an
expansion that uses a single function centered and mostly concentrated at nodes of the
quadrature, thus providing a much better localization than spherical harmonic expansions.
We show that this representation may be localized even further. We also describe two
algorithms of complexity O(N3) for using these grids and representations. Finally, we note
that our approach is also applicable to other discrete rotation groups. These results have
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been published, see C. Ahrens and G. Beylkin, “Rotationally Invariant Quadratures for
the Sphere”, Proceeding of Royal Society of London A, vol. 465, pp.3103–3125, 2009 (see
http://dx.doi.org/10.1098/rspa.2009.0104).
These quadratures form a foundation for the development of new multiresolution grids on
the sphere with the goal of replacing spherical harmonics by localized representations that
are more appropriate for gravity modeling and other tasks where physics requires local
approximations. We have started work on the further localization of representations of
functions on the sphere and developing multiresolution constructions suitable for estimation
of functions on the sphere.

Below we provide background and motivations for these developments.

1. Local approximation of gravity models and a new type of ODE solvers

Space surveillance, navigation of aircraft and missiles requires detailed gravity and elevation
maps. The choice of representation of such digital information affects efficiency and accuracy of
numerical algorithms that use these data. It is often highly desirable to combine heterogeneous
data derived from sources with different spatial resolutions, accuracies, and coverages. Thus, there
is a need to develop data representations and algorithms that are flexible and efficient to satisfy
all of these requirements.

Many of the current mathematical representations and associated numerical algorithms were
developed in the 1950s and 1960s, at a time when computers were quite different from what is
routinely available today. The difference is not only in the drastically improved speed of modern
computers, but also in the size of available memory (RAM), the computer architecture (e.g.,
parallel architecture of inexpensive Graphics Processing Units (GPUs)), and the relative cost of
arithmetic operations. These differences, as well as the availability of recently developed numerical
methods, require rethinking of the traditional approach to many of these problems.

Spherical harmonic expansions have been and still are the preferred analytical tool for the
representation of gravitational data. Among their advantages for low resolution models, is the
relative simplicity, rapid convergence (although only for smooth functions), relatively low cost of
evaluation at each point, relatively low memory requirements, and the availability of the Fast
Fourier Transform (FFT) for the acceleration of the azimuthal part of the associated transform.
As the gravity maps became more detailed, higher order spherical harmonic expansions had to
be used to represent them. Currently, expansions of order and degree 360 are used in certain
situations, and those of order and degree 720 are being constructed; there is every reason to expect
that the spatial resolution of the maps will keep increasing. As a result of this growth, several
problems with spherical harmonic expansions have become obvious, namely:

(1) the representation of data is global; a local change in the model in any one area requires
re-calculation of the whole expansion.

(2) evaluating expansion of the order and degree n at a single point costs O(n2) operations; in
many situations this cost is excessive.
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(3) typically the data are needed within a relatively small window, covering only a small part
of the sphere; extracting these data from the spherical harmonic expansion is inconvenient
and could be expensive.

Several local approximation of gravity models have been developed to address some of these issues.
In this project we demonstrated that these approximations do not compromise accuracy in orbit
determination but drastically improve the speed of these computations. On the other hand, we
still do not have a fully adequate “replacement” for spherical harmonics and our effort has been
advancing with this goal in mind.

A more detailed accuracy comparison of using local gravity models in orbit determination may
be found in http://dx.doi.org/10.2514/1.45336. A new approach to estimating local gravity
models has been suggested in http://dx.doi.org/10.1016/j.acha.2009.08.011.

Other aspects of these type of problems, namely, a new type of A-stable, symplectic integrator
is describes in the attached preprint.

We also include below a brief description and motivation for constructing quadratures invariant
under the icosahedral group and refer to http://dx.doi.org/10.1098/rspa.2009.0104 for a
more detailed description.

2. Nearly optimal quadratures on the sphere

Many problems in physics, mathematics and engineering involve integration and interpolation on
the sphere in R

3. Of particular importance are discretizations of rotationally invariant subspaces
of L2 (S2) that integrate all spherical harmonics up to a fixed order and degree. A typical approach
to discretizing the sphere is that of equally spaced discretization in azimuthal angle and Gauss-
Legendre discretization in polar angle, leading to an unreasonably dense concentration of nodes
near the poles. It is well known that in a variety of applications such concentration of nodes may
lead to problems when using these grids.

We develop a systematic numerical approach for constructing nearly optimal quadratures in-
variant under the icosahedral group to integrate rotationally invariant subspaces of L2 (S2) up to
a fixed order and degree. Using these grids and a reproducing kernel, we show how to replace
the standard basis of spherical harmonics on a rotationally invariant subspace by a representation
formed using a single function centered at the quadrature nodes. The reproducing kernel is mostly
concentrated near the corresponding grid point. In the resulting representation, the coefficients,
up to a factor, are the values on the grid of the function being represented. We may interpret this
construction as an analogue of Lagrange interpolation on the sphere and note that it allows us to
develop well conditioned linear systems for interpolation in contrast to some earlier constructions.

An alternative to spherical harmonics has long been sought, especially for numerical purposes.
Spherical harmonics provide an efficient orthonormal basis, nicely subdivided into rotationally
invariant subspaces. However, the global support of these functions poses a serious difficulty in
problems where physical effects are localized. In fact, the global nature of spherical harmonics is
a consequence of their optimality. Therefore, if we want localized functions to represent the same
subspaces, we necessarily must have a less efficient representation.
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Figure 2.1. Positions of 7212 quadrature nodes of a quadrature integrating exactly
all spherical harmonics in the subspace of maximal order and degree 145. This
quadrature has efficiency η = 0.98521.... (efficiencyη = 1 implies that each node
accommodates 3 degrees of freedom in the subspace).

We view our approach as the first step in constructing a local and multiresolution representation
of functions on the sphere that respects rotationally invariant subspaces. We note that the high
efficiency of quadratures constructed in this paper implies a near uniform distribution of nodes
on the sphere. On the other hand, the nodes maintain a regular organization visually similar to
that of geodesic or equal area grids. Moreover, our grids are associated with rotationally invariant
subspaces, an important property in a number of numerical applications, e.g., geodesy. To date,
we have constructed grids which integrate subspaces of maximum order and degree ranging from
5 up to 210. As an example, we illustrate Figure 2.1 a grid with 7212 nodes integrating subspaces
with maximal order and degree 145.

The rotationally invariant spherical grids constructed here have many applications. Let us
mention a few specific problems in some detail. First, due to the central role played by spherical
harmonics in the theory of gravity and magnetic fields, solutions to many geodetic problems use
them as a basis. Yet, their global support is inconsistent with the physical nature of the problem
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leading to many difficulties in, e.g., constructing gravity models. The grids developed in this
paper provide a first step toward replacing spherical harmonics with localized functions. We plan
to continue work in this direction. Second, the equations used in global atmospheric modeling
are typically posed on the sphere. Current spectral methods which use spherical harmonics suffer
from the above mentioned problems of nodal clustering and require additional steps to alleviate the
problem. The new representations developed in this paper eliminate clustering and singularities
due to the coordinate system and should provide efficient solution methods. Third, acoustic and
electromagnetic scattering problems posed as integral equations involve integration over spherical
domains. New algorithms for the numerical solution of these integral equations may be based on
the results of this paper. Finally, we mention a numerical technique used in molecular dynamics
calculations known as discrete variable representation (DVR). Our quadratures should extend such
methods by allowing effectively an arbitrary order and degree.

Current address: Department of Applied Mathematics, University of Colorado at Boulder, 526 UCB Boulder,

CO 80309-0526,
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ODE Solvers Using Bandlimited

Approximations

G. Beylkin and K. Sandberg

Department of Applied Mathematics

University of Colorado at Boulder

526 UCB

Boulder, CO 80309-0526

Abstract

We use generalized Gaussian quadratures for exponentials to develop a new ODE
solver. These generalized Gaussian quadratures integrate functions eibx for all |b| ≤ c,
where the nodes and weights are computed for a given bandlimit c and any user
selected accuracy ǫ. An imprortant property of nodes of these quadratures is that
they do not concentrate excessively near the end points of the interval as the nodes
of the standard polynomial-based Gaussian quadratures. The new ODE solver is
analogous to the usual implicit Runge Kutta (collocation) method but it allows us
to use a large number of nodes due to properties of the quadrature. We show that the
resulting ODE solver is symplectic and A-stable. We use this solver in the problem of
orbit determination and achieve speed close to that of an explicit multistep method.

1 Introduction

Current methods for solving ODEs, be that multistep or Runge-Kutta, are
based on polynomial approximations of functions. On the other hand, both
recent and classical results [5,4,18,16,11,17] indicate that in many situations
bandlimited functions provide a near optimal tool for numerical integration
and interpolation of functions. For example, a time domain solver for the wave
equation [5] uses bandlimited approximations and yields about 12 digits of ac-
curacy with only 3 nodes per wavelength. Given recently developed tools for
computing with bandlimited functions, our goal is to demonstrate that, by us-
ing bandlimited approximations, we also gain advantages in numerical solution

1 This research was partially supported by AFOSR grant FA9550-07-1-0135, NSF
grant DMS-0612358, DOE/ORNL grants 4000038129 and DE-FG02-03ER25583.

Preprint submitted to Elsevier Science June 4, 2009
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of the initial value problem for the ordinary differential equations (ODEs). As
an example, we use ODEs for orbit determination to provide us with both, a
practical application as well as a gauge to ascertain the performance of new
algorithms.

Numerical solution of ODEs is a mature area of applied mathematics with
many well-developed software packages. In spite of this satisfactory state of
affairs, we challenge the usual approach to selecting an ODE solver for a given
problem. We note a specific inefficiency of multistep methods, the fact that
such methods can only be A-stable if their order does not exceed 2 (the so-
called Dahlquist barrier). Whereas implicit Runge-Kutta methods with Gauss-
Legendre nodes are A-stable and symplectic, we are limited in using a large
number of Gauss-Legendre nodes per time step since such nodes concentrate
excessively near the end points of the time interval. We note that unlike in
problems of wave propagation [5] where solutions are naturally expressed via
exponentials, solutions of some ODEs may, in fact, be polynomials or other
functions that do not have an efficient approximation via exponentials. For
such equations it actually may be advantageous to use polynomial quadra-
tures. However, it is more typical to encounter ODEs where solutions do have
an efficient approximation via exponentials and our method is most suitable
for such ODEs.

Unlike the classical Gaussian quadratures for polynomials, the Gaussian type
quadratures for exponentials attempt to integrate an infinite set of functions,
namely, eibx with |b| ≤ c, using a finite set of nodes. Clearly, there is no way to
accomplish this exactly. Thus, these quadratures are constructed so that all
exponentials for |b| ≤ c are integrated with accuracy of at least ǫ, where ǫ is
arbitrarily small but finite. Such quadratures were constructed in [4,18] (we use
those in [4]). An important observation in [5] is that the nodes of quadratures
of this type do not concentrate excessively near the end points, thus allowing
us to use as many nodes as necessary, without a penalty due to their number.
The density of nodes increases toward the end points of the interval only by
a factor that depends on the desired accuracy but not on the overall number
of nodes. Since we may choose many nodes, say M , it makes sense to ask
if the integration matrix of an implicit Runge-Kutta type method can be
applied in O(M) or O(M logM operations rather O(M2). We note that such
question does not make sense for the classical, polynomial-based quadratures
since a rapid concentration of nodes towards the end points severely limits the
number of nodes. We show that, indeed, it is possible to apply the integration
matrix in a fast manner (within a finite accuracy ǫ). This may, for example,
be accomplished by using the partitioned low rank (PLR) representation as it
was described in [BEY-SAN:2005]. Using PLR representation, the speed of an
implicit method is now of the same order as that of an explicit method. We
note that there might be even more efficient approaches to the fast application
of the integration matrix than PLR representation.
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This change of complexity allows us to challenge the usual view that explicit
methods are inherently faster than implicit methods. While explicit methods
require a significant oversampling, implicit methods only needs to maintain
minimally appropriate sampling but do extra work to solve a system of equa-
tions at each step. If the efficiency is measured in terms of the number of
function calls, then their total number is no longer differs substantially be-
tween explicit and implicit methods.

Using the Gaussian-type quadratures for bandlimited functions, we construct
ODE solvers that mimic the standard implicit Runge-Kutta methods with
Gauss-Legendre nodes (see e.g. [ISERLE:1996]). Similar to such methods,
our method is A-stable. Although our algorithms are based on approximate
quadratures and, thus, cannot produce results with accuracy better than the
chosen accuracy ǫ, we note that if ǫ ≈ 10−16 the effect of such limitation is the
same as using double precision in floating point arithmetic. Moreover, we show
that in spite of the approximate nature of our quadratures, the integrators may
be made exactly symplectic.

All these properties make our approach attractive for a number of applications
and we select orbit determination as an example. Not only does it provide us
with a practical application, it also allows us to demonstrate certain “tricks”
associated with our choice of the method that further reduce the computa-
tional cost. Although orbit determination typically is not a stiff problem, we
demonstrate advantages of using an implicit method in that we substantially
reduce the required number of function calls to the full gravity model (beyond
the reduction of overall number of function calls in comparison with existing
methods).

2 Preliminaries: quadratures for bandlimited functions

2.1 Bandlimited functions as a replacement of polynomials

Recently constructed quadratures [18,4] address efficiency of sampling for rep-
resenting functions by breaking with the conventional approach of using poly-
nomials as the fundamental tool in analysis and computation. The approach
based on polynomial approximations has a long tradition and leads to such
notions as the order of convergence of numerical schemes, Gaussian quadra-
tures (for polynomials), polynomial based interpolation, and so on. Recently,
the dominance of such an approach (it clearly remains reasonable for many
problems) has been successfully challenged. It turns out that constructing
quadratures for bandlimited functions, e.g., exponentials eibx, with |b| ≤ c,
where c is the bandlimit, a fixed parameter, leads to significant improvement

3
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in performance of algorithms for interpolation, estimation and solving partial
differential equations [5].

2.2 Bases for bandlimited functions

Whenever measurements are performed, all sensors are of limited size; their
frequency response for all practical purposes is also limited outside a finite
range. On the other hand, it is well-known that a function whose Fourier
Transform has compact support can not have compact support itself (unless it
is identically zero). Therefore, it is natural to analyze an operator whose effect
on a function is to truncate it both in the original and the Fourier domains.
This has been the topic of a series of seminal papers by Slepian et al. [17],
[11], [12], [14], [15], where it is observed (inter alia) that the eigenfunctions
of such operator (see (1) below) are the Prolate Spheroidal Wave Functions
(PSWFs) of classical Mathematical Physics.

While periodic bandlimited functions may be expanded into Fourier series,
and band-limited functions on the real line may be represented via the Fourier
Integral Transform, we must also deal with non-periodic functions on intervals,
where neither the Fourier series nor the Fourier Integral can be used efficiently.
This motivates the introduction of a basis that efficiently represents (on an
interval) functions of the form eibx for an arbitrary real value b, as long as
|b| < c, with a fixed (bandlimit) parameter c. Since b varies continuously, such
a basis is not finite. On the other hand, an arbitrary but finite precision is
achievable with a finite basis consisting, for example, of appropriately chosen
PSWFs.

For a real number c > 0 (to be referred to as the bandlimit), we consider the
operator Fc : L2[−1, 1] → L2[−1, 1], defined by the formula

Fc(ψ)(ω) =
∫

1

−1

eicxωψ(x)dx, (1)

and the operator Qc = c
2π
F ∗

c Fc; it is easily seen that

Qc(ψ)(y) =
1

π

∫

1

−1

sin(c(y − x))

y − x
ψ(x) dx. (2)

The eigenfunctions ψc
0
, ψc

1
, ψc

2
, · · · of Qc coincide with those of Fc, and the

eigenvalues µj of Qc are connected with the eigenvalues λj of Fc by the formula

µj =
c

2π
|λj|

2, (3)

for all j = 0, 1, 2, · · · , where the eigenvalues are ordered by decaying magni-
tude.

4
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In many respects, PSWFs are strikingly similar to orthogonal polynomials;
they are orthonormal, constitute a Chebychev system, and admit a version
of Gaussian quadratures (see [18], [4]). One of the results in [18] and [4] is
formulated as

Proposition: For c > 0 and ǫ > 0, there exist nodes −1 < θ1 < θ2 < · · · <
θM < 1 and corresponding weights wk > 0, such that for any x ∈ [−1, 1],

∣

∣

∣

∣

∣

∫

1

−1

eictx dt−
M
∑

k=1

wke
icθkx

∣

∣

∣

∣

∣

< ǫ, (4)

where the number of nodes, M , is (nearly) optimal. The nodes and weights
maintain the natural symmetry, θk = −θM−k+1 and wk = wM−k+1. When the
functions ψc

0
, ψc

1
, ψc

2
, · · · , ψc

M−1
are used as a basis for the interpolation on the

interval [−1, 1], with the points θ1, θ2, · · · , θM used as the interpolation nodes,
the resulting interpolation formula is stable.

This proposition provides a tool for the numerical integration and interpo-
lation of functions of the form eibx on [−1, 1]. The nodes and weights are
functions of both the bandlimit c > 0 and the accuracy ǫ > 0, and may be
viewed as the generalized Gaussian quadratures for the bandlimited functions.
It is worth noting that the algorithm in [4] identifies the nodes of the gener-
alized Gaussian quadratures in (4) as zeros of the discrete prolate spheroidal
wave functions (DPSWFs) corresponding to small eigenvalues.

One of problems associated with the numerical use of orthogonal polynomials,
is the concentration of their roots near the ends of the interval of their defini-
tion. Using nodes θ1, θ2, · · · , θM , we maintain a nearly optimal sampling rate,
close to the Nyquist rate for periodic functions. Let us consider the ratio

r(M, ǫ) =
θ2 − θ1

θ⌊M/2⌋ − θ⌊M/2⌋−1

, (5)

where “⌊M/2⌋” denotes the least integer part. Observing that the distance be-
tween nodes of Gaussian quadratures changes monotonically from the middle
of an interval toward its end points, and that the smallest distance occurs be-
tween the nodes closest to the end point, the ratio 5 may be used as a measure
of node accumulation. For example, the distance between the nodes near the
end points of the standard Gaussian quadratures for polynomials decreases
as O(1/M2), so that we have r(M, ǫ) = O(1/M), where M is the number of
nodes,

In Figure 1, considering bandlimit c as a function of the number of nodes, M ,
and the desired accuracy ǫ, we observe that the oversampling factor,

α(M, ǫ) =
πM

c(M, ǫ)
> 1,

5
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Figure 1. The ratio r(M, ǫ) in (5) and the oversampling factor α(M, ǫ) plotted against
the number of nodes for quadratures of accuracy ǫ ≈ 10−7and ǫ ≈ 10−17.

approaches 1 for large M. This factor compares the critical rate of sampling
of a smooth periodic function, either for integration or interpolation, to that
of smooth non-periodic function defined on an interval. We recall that in the
case of the Gaussian quadratures for polynomials, the oversampling factor
approaches π

2
rather than 1 (see e.g. [8]).

To illustrate the gain in efficiency, we compare accuracy of differentiation using
bases for bandlimited functions, finite differences and spectral differentiation
using the Chebyshev polynomials. We construct two derivative matrices us-
ing bandlimited bases with accuracy ǫ = 10−7 and bandlimit c = 23π, and
with ǫ = 10−13 and bandlimit c = 18.5π. For comparison, we construct a
second-order central finite-difference derivative matrix and, for spectral differ-
entiation, a block diagonal spectral derivative matrix with 4 blocks where each
diagonal block is a derivative matrix with respect to the first 16 Chebyshev
polynomials. We differentiate the function f(x) = sin(bx) for 200 values of b,
−32π ≤ b ≤ 32π. In Figure 2 we illustrate the extra bandwidth where the
bandlimited derivatives are accurate [5].

3 Discretization of Picard integral equation

Consider the initial value problem

y′ = f(t,y), y(0) = y0,

or, equivalently,

y(t) = y0 +
∫ t

0

f(s,y(s)) ds. (6)
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Figure 2. Comparison of absolute errors for the first derivative of the function sin(bx)
in the interval [−1, 1] with |b| ≤ 32π. In all examples the derivative matrices use 64
independent parameters.

For a given accuracy ǫ, we select Gaussian nodes {τj}
M
j=1

such that on [0, t]

‖f(t,y(t)) −
M
∑

j=1

f(τj ,y(τj))Rj(t)‖ ≤ ǫ, (7)

where Rj(t) are interpolating basis functions associated with the generalized
Gaussian nodes for exponentials [4,5]. We discretize (6) by using (7) to obtain
a nonlinear system,

y(τi) = y0 +
M
∑

j=1

f(τj ,y(τj))
∫ τi

0

Rj(s)ds = y0 +
M
∑

j=1

Sijf(τj ,y(τj)), (8)

where Sij =
∫ τi
0
Rj(s)ds is the integration matrix.

3.1 Relation to Implicit Runge Kutta methods based on collocation

Consider (8) with M quadrature nodes {τj}
M
j=1

(and the corresponding weights
{wj}

M
j=1

) in the interior of the interval [0, t]. Then implicit Runge-Kutta meth-
ods based on collocation discretize (6) as

y(t) = y0 +
M
∑

j=1

wjf(τj ,y(τj)), (9)

where {y(τj)}
M
j=1

are obtained by solving the nonlinear system (8). The nodes,
weights, and the entries of the integration matrix are typically organized in

7
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the Butcher tableau,

τ S

wt
.

Unlike in the standard implicit Runge-Kutta method based on Gauss-Legendre
quadratures, we solve (8) on a time interval containing a large number of
quadrature nodes, M (since these nodes do not concentrate excessively near
the end points).

3.2 Exact Linear Part

In many problems (including that of orbit determination), the right hand side
of the ODE, f(t,y), may be split into a linear and nonlinear parts,

f(t,y(t)) = Ly(t) + g(t,y(t)).,

so that the integral equation (6) may be written as

y(t) = etLy0 +
∫ t

0

e(t−s)Lg(s,y(s)) ds. (10)

If the operator etL is computed efficiently, this formulation may lead to savings
when solving the integral equation iteratively. We discretize (10) by using (7)
and obtain

y(τi) = eτiLy0 +
M
∑

j=1

e(τi−τj)Lg(τj,y(τj))
∫ τi

0

Rj(s)ds

= eτiLy0 +
M
∑

j=1

Sije
(τi−τj)Lg(τj ,y(τj)) (11)

where Sij =
∫ τi
0
Rj(s)ds. We note that (8) is a special case of (11) with L = 0

and g = f .

3.3 Algorithm

Next we describe a fixed point iteration to solve (11). Let Nit denote the
number of iterations, which can either be set to a fixed number or deter-
mined adaptively. Labeling the intermediate solutions in the iteration scheme
as y(i), i = 1, . . . , Nit, we have
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(1) Initialize y(1)(τi) = y0, i = 1, . . . ,M .
(2) For k = 1, . . . , Nit

For m = 1, . . . ,M

(a) Update the solution at the node m:

y(k)(τm) = eτmLy0 +
∑M

j=1
Smj e

(τm−τj)Lg(τj,y
k(τj))

(b) Update the right hand side: g(τm, y
(k)(τm))

4 Symplectic integrators

Following [13], let us introduce matrixM = {mkj}
M
k,j=1

for an implicit M-stage
Runge-Kutta (RK) scheme,

mkj = wkSkj + wjSjk − wkwj , (12)

where w = {wk}
M
k=1

and S = {Skj}
M
k,j=1

define the Butcher’s tableau for the
method.

It is shown in [13] that

Theorem 1 If matrix M = 0 in (12), then an implicit M-stage RK scheme
is symplectic.

This condition, M = 0, is satisfied for the Gauss-Legendre RK methods, see
e.g. [6,13]. We will enforce it to construct symplectic integrators for collocation-
type methods based on the generalized Gaussian quadratures for bandlimited
functions. In spite of the fact that such quadratures are accurate only up to
a fixed (but arbitrary) accuracy ǫ, we can still satisfy the condition M = 0
exactly.

Our proof is based on several observations.

Proposition 2 Let {Ri(τ)}
M
i=1

be interpolating basis functions for the quadra-
ture nodes {τj}

M
j=1

, such that Ri(τj) = δij. Define Fi(τ) =
∫ τ
−1
Ri(s) ds and let

{wj}
M
j=1

be quadrature nodes such that

∣

∣

∣

∣

∣

∫

1

−1

Fj(τ)F
′
i (τ) dτ −

M
∑

k=1

wkFj(τk)F
′
i (τk)

∣

∣

∣

∣

∣

< ǫ2 (13)
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Then
∣

∣

∣

∣

∣

∫ τi

−1

Rj(s) ds−

∫

1

−1

∫ τ
−1
Rj(s) ds Ri(τ) dτ

wi

∣

∣

∣

∣

∣

< ǫ2.

PROOF. We first observe that due to the interpolating property of Ri(τ),
we have

∫ θi

−1

Rj(s) ds =

∫ θi
−1
Rj(s) ds wiRi(θi)

wi
=

∑M
k=1

∫ θk
−1
Rj(s) ds wkRi(θk)

wi
. (14)

Next we note that

∫

1

−1

∫ τ

−1

Rj(s) ds Ri(τ) dτ =
∫

1

−1

Fj(τ)F
′
i (τ) dτ,

so that proposition follows by combining (14) and (13).

Proposition 3 Let {Ri(τ)}
M
i=1

be interpolating basis functions for the quadra-
ture nodes {τj}

M
j=1

, such that Ri(τj) = δij. Let {wj}
M
j=1

be the corresponding
quadrature weights so that

∣

∣

∣

∣

∣

∫

1

−1

Ri(τ) dτ −
M
∑

k=1

wkRi(τk)

∣

∣

∣

∣

∣

< ǫ2.

Then
∣

∣

∣

∣

∫

1

−1

Ri(s) ds− wi

∣

∣

∣

∣

< ǫ2.

PROOF. The result follows from the interpolating property of Ri(τ).

Theorem 4 Given M quadrature nodes {τk}
M
k=1

and interpolating functions
{Rk}

M
k=1

, let weights for the quadrature be defined as

wk =
∫

1

−1

Rk(τ)dτ (15)

and the integration matrix as

Skl =

∫

1

−1

(

∫ τ
−1
Rl(s) ds

)

Rk(τ) dτ

wk

, k, l = 1, . . . ,M.

Then

wkSkl + wlSlk − wkwl = 0,

and the implicit scheme using these nodes and weights is symplectic.
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PROOF. Using propositions above, we observe that the weights defined in
(15) are the same (up to accuracy ǫ2) as those of the quadrature. The result
follows if we set Fk(τ) =

∫ τ
−1
Rk(τ) dτ , F

′
k(τ) = Rk(τ) and integrate by parts

to obtain

wkSkl + wlSlk − wkwl =
∫

1

−1

Fl(τ)F
′
k(τ) dτ +

∫

1

−1

Fk(τ)F
′
l (τ) dτ − wkwl

= Fl(1)Fk(1) − wkwl.

By the definition of the weights we have Fk(1) = wk and, hence, Fl(1)Fk(1)−
wkwl = 0.

Remark 5 Implicit Runge-Kutta methods based on Gauss-Legendre nodes are
A-stable (see e.g [10]). We verified numerically (within the accuracy of under-
lying quadrature) that this property carries on to the schemes based on the
generalized Gaussian quadratures for exponentials. Currently, we do not have
a proof of this observation.

5 Fast application of integration matrix

The repeated application of the integration matrix S dominates the com-
putational cost of current algorithm since applying S as a dense matrix re-
quires O(M2) operations. We demonstrate that this cost may be reduced to
O(M logM). However, we consider this as a preliminary result since it is also
important to assure that the break even point with the usual dense matrix-
vector multiply is low and the fast scheme becomes beneficial for a relatively
small M . We note that the overall operation count also takes into account the
number of iterations Nit for solving the nonlinear system (11) in Section~3.3.
Since the number of iterations depends on the length of the time interval on
which we discretize our system of ODEs, it may grow as a function of M and
diminish the benefit of increasing the number of nodes M .

We now outline two approaches for applying the integration matrix S in
O(M logM) operations.

5.1 The Partitioned Low Rank (PLR) representation

The Partitioned Low Rank (PLR) representation may be applied in a variety
of problems where the off-diagonal part of a matrix has a relatively small rank.
In particular, PLR may be used for integration and differentiation matrices.
The idea is to subdivide the matrix as in Figure 3 and then represent individual
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off-diagonal blocks as a sum of rank one matrices,

r
∑

k=1

ukvk,

where uk and vk, k = 1, . . . , r are vectors of appropriate size for a given block.
In this representation, the number of terms r (the rank of the off-diagonal
block) is selected for a given user-supplied accuracy and may be found by
the Singular Value Decomposition (SVD). However, since we do not require
orthogonality between vectors, a simpler algorithm may be used instead. If
the ranks of off-diagonal blocks r are small, the cost of applying matrces in
the PLR representation is O(M logM). For more details, see [2,5].

Figure 3. Partitioning of a matrix in PLR representation

As an example, consider the integration matrix in Theorem 4 with 70 nodes,
a size that we have found to give a good compromise between large number of
nodes vs. small number of iterations. In this case, optimal PLR performance
is obtained by using just one level of subdivision with the rank r = 13 for the
lower and r = 14 for the upper off-diagonal blocks to attain double precision
accuracy. In this case, applying the integration matrix in the PLR representa-
tion requires 7735 operations, whereas applying the dense integration matrix
takes 9800 operations, only a moderate improvement in performance.

It remains a challenge to increase the intervals of integration (in order to work
with a larger matrix size M) without increasing the number of iterations.

5.2 Quadratures of Gauss-Trapezoidal type

In [1] Alpert introduced high order, polynomial based quadratures with nodes
equally spaced in the interior of the interval and with a limited region of
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higher node density near its boundary. Such node distribution allows one to
use Fourier-type methods combined with a low rank correction. It turns out
that a similar quadrature for exponentials (bandlimited functions) may also
be constructed and we use an example of such quadratures (supplied to us
by Brad Alpert) in our numerical experiments. We note that this arrange-
ment of nodes does reduce the bandlimit of functions accurately integrated
by the quadrature but its structure provides certain advantages vis-a-vie fast
algorithms.

Let us demonstrate how this quadrature may be used for fast application of
the integration matrix defined by

Skl =
∫ θk

−1

Rl(s) ds.

We note that although currently we do not have a proof that this matrix
is symplectic, we verified numerically that it is very close to the symplectic
integration matrix defined in Theorem 4.

Using representation of the interpolating functions Rl(s) via exponentials (i.e.,
their definition in [5]), we have

Rl(s) =
M
∑

j=1

Alje
icθjs (16)

and write Skl as
Skl = S̃kl − αl

where

S̃kl =
M
∑

j=1

Alj
eicθkθj

icθj

and

αl =
M
∑

j=1

Alj
e−icθj

icθj
.

We note that matrix elements αl are independent of the index k and, therefore,
may be applied as a rank-one matrix. Hence, we only need to consider applying
S̃. Let us define

Ekj = eicθkθl

and the diagonal matrix

Dkj =











1

icθj
, i = j

0 i 6= j
.

Since functions Rl(s) are interpolating, Rl(θk) = δkl, and we have from (16)
that A = E−1. Hence, we write

S̃ = E−1DE.
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Let us introduce matrix of the disrete Fourier Transform,

Fkj = e2πikj/M ,

and a parameter

c =
L2π

2M
,

where L = 2a+ninterior−1, ninterior is the number of interior equispaced nodes
and a is the size of the region near the boundary with nodes of higher density.
We then have for the interior nodes

Ekj = eicθkθl = eic(2k/L−1)(2j/L−1) = e2πikj/Me−2ick/Le−2icj/Leic

or

Ekj = Fkje
−2ick/Le−2icj/Leic,

where

DF = diag{e−2icj/Leic/2
}

M−1

k=0

For the full matrix E we write

E = DFFDF +G

where G is a matrix that with zeros in its interior and a non-zero border near
the edges of the matrix. Thus, matrix G has low-rank.

Applying matrix S to a vector f may now be written as

Sf = (DFFDF +G)−1
(

D(DFFDF +G)f
)

= (DFFDF +G)−1g,

where

g ≡

(

D(DFFDF +G)f
)

We note F is a matrix of the Discrete Fourier Transform (DFT) which may
be applied in O(M logM) operations using the FFT. Since G is of low rank
and D and DF are diagonal, g may be computed in O(M logM) operations.
Furthermore, we have

(DFFDF +G)−1 = (I +DF,−1F−1DF,−1G)−1F−1

and, using the fact that DF,−1F−1DF,−1G is of low rank, we have a fast algo-
rithm to compute Sf by the use low rank update of the inverse.
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6 Numerical Examples

6.1 Orbit Determination

Current ODE integrators for orbit computations use high order Gauss-Jackson
multistep methods. Several years ago we have compared the number of func-
tion evaluations of this method with an explicit version of the deferred spec-
tral correction method in [7,9]. The comparison was in favor of the latter
and it showed that high order multistep methods are significantly oversam-
pled (which also follows from theoretical considerations). Therefore, a possible
gain in performance should come from the reduced sampling requirements; we
believe that quadratures for bandlimited functions are the right tool for this
purpose. The new methods will add to the variety of available techniques and
will also provide new time evolution schemes for partial differential equations.

Let us consider the spherical harmonic model of the gravitational potential,
V (x, y, z), which in the spherical system of coordinates is written in terms of
the spherical harmonics,

Vsph(ρ, φ, θ) =
µ

aρ

(

1 +
N
∑

n=2

ρ−nYn(θ, φ)

)

. (17)

Let G = (Gx, Gy, Gz)
t = ∇V and we use the gravity model of the form

G(t,y(t)) =















−
µx(t)

(x(t)2+y(t)2+z(t)2)3/2
+
∑N

n=2
Gx(y(t))

−
µy(t)

(x(t)2+y(t)2+z(t)2)3/2 +
∑N

n=2
Gy(y(t))

−
µz(t)

(x(t)2+y(t)2+z(t)2)3/2
+
∑N

n=2
Gz(y(t))















.

In order to reduce the number of function calls to the full model, we initially
use the gravity model with N = 3 on a large portion (e.g., 1/2 of a period) of
an orbit to solve the system of nonlinear equations via a fixed point iteration.
We then access the full gravity model and evaluate the gravitational force at
the nodes that by now are located close to their correct positions. We continue
iteration (without accessing the full gravity model again) to adjust the orbit.
This results in an essentially correct trajectory. At this point we may (and
currently do) access the full gravity model one more time to evaluate the
gravitational force and perform another iteration. Thus, we access the full
gravity model at most twice per node while using a number of nodes that is
substantially lower than in traditional methods.

Let us now re-write the orbit determination problem (using only gravitational
forces) in a form that conforms with the algorithm in Section 3.3. We define
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the six component vector

y(t) =



































x(t)

x′(t)

y(t)

y′(t)

z(t)

z′(t)



































,

where [x, y, z]t denote the positions, and [x′, y′, z′]t denote the velocities. We
also define the matrix

L =



































0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0



































and the right hand side

g(t,y(t)) =



































0

−
µx(t)

(x(t)2+y(t)2+z(t)2)3/2 +
∑N

n=2
Gx(y(t))

0

−
µy(t)

(x(t)2+y(t)2+z(t)2)3/2 +
∑N

n=2
Gy(y(t))

0

−
µz(t)

(x(t)2+y(t)2+z(t)2)3/2 +
∑N

n=2
Gz(y(t))



































,

where G(y(t)) = [Gx(y(t)),Gy(y(t)),Gz(y(t))] denotes the x, y and z-components
of gravity model starting with n = 2 and up to order N . The ODE describing
the orbit determination problem is now given by (10).

We apply the algorithm in Section 3.3 by first using Nit = 2 and N = 3
to obtain an approximate solution. We then switch to the full model with
N = 70 and, at this point require only one or two iterations Nit. Thus, we
need to access the full model only once or twice per node.
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6.2 Timing

We tested and timed the algorithm by computing an orbit of 86000 seconds
(≈ 1 day) using a 36 and 70 degree gravitational model. The timing was
performed on a computer with an Intel Core2 Extreme processor at 2.96 GHz
and 4 GB of RAM at 800 MHz. (However, only a small fraction of the RAM
was actually used during the computation.)

6.2.1 Timing results using spherical harmonics

We first timed the algorithm using the spherical harmonic gravitational model.
The timing results are given in Table 1.

Degree CPU Time (s) Number of function calls

36 9.0E-02 6160

70 2.7E-01 6160

Table 1
CPU time and number of function calls to full gravitational model when computing
a orbit of 86000 seconds using spherical harmonics.

6.2.2 Timing results using a cubed sphere spline model

We also timed the algorithm when computing the gravitational model using
a local cubed sphere spline model [3]. The timing results are given in Table 2.

Degree CPU Time (s) Number of function calls

41 3.2E-02 6160

70 3.2E-02 6160

Table 2
CPU time and number of function calls to full gravitational model when computing
a orbit of 86000 seconds using a local cubed sphere model.

6.2.3 Current (indirect, crude) estimate of timing

We tested the speed of our code on a sample NOAA satellite orbit, for which
we received timing results using the SPEPH code. Since the SPEPH code and
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our code ran on different machines, we were able only to estimate the timing
using the following approach. We were given the speed of SPEPH code for
gravitational models with N = 36 and N = 70 order and degree. Assuming
that timing captures the cost of integration and access to the gravity model
and assuming that the cost of integration is the same for both models, we
write

t
(deg)

total = tcode + t
(deg)

model,

where tcode is the time of integration and t
(deg)

model is the time of access to the
model. We further assume that

t
(70)

model/t
(36)

model = (70/36)2
≈ 3.78,

since the cost of access to the spherical harmonic model grows quadratically
with its order and degree. Given this information for SPEPH code and timing
our code we obtain the following comparison by solving the above equations

t
(36)

model =
t
(70)

total − t
(36)

total

3.78 − 1
≈ 0.36 · (t

(70)

total − t
(36)

total)

t
(70)

model = 3.78 · t
(36)

model ≈ 1.36 · (t
(70)

total − t
(36)

total)

tcode = t
(36)

total − t
(36)

model.

Using the values from timing SPEPH, t
(36)

total = 5.21 and t
(70)

total = 16.36, we get

t
(36)

model ≈ 4.0

t
(70)

model ≈ 15.12

tcode ≈ 1.21

t
(70)

model

tcode

≈ 12.5

For our code we have t
(36)

total = 6.3 and t
(70)

total = 18.6, and we get

t
(36)

model ≈ 4.4

t
(70)

model ≈ 16.63

tcode ≈ 1.9

t
(70)

model

tcode
≈ 8.75

Thus, currently, our implicit code appears to be about 30% slower than the
explicit SPEPH code (if the indirect estimate above is correct). Also, it appears
that the computation of the spherical harmonics has been accelerated in the
current SPEPH code in comparison with its predecessor since the tests of 6−7
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years ago were done. For this reason, the local gravity model developed in [3]
is faster than the spherical harmonic model by a lower factor, perhaps only a
factor of 10 rather than 40 as before. However, this may be changed to higher
performance factors so that the local model becomes faster since it is a simple
matter of trading speed vs memory (memory is no longer a problem for the
sizes needed for these models). We also need to accelerate our code to match
and, hopefully, exceed the speed of the current SPEPH code. Note that the
our code is A-stable and symplectic (if need be). The code is currently being
tested for accuracy by Brandon Jones and appears to match the results of the
codes used in CU Aerospace Department.

7 Conclusions

We have constructed an implicit, symplectic integrator that has speed compa-
rable to the explicit multistep integrator currently used for orbit computation.
In combination with a local model for gravity it achieves a factor of 8.3 im-
provement in speed compared to using a global gravity model.
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